Crypt2 C# WinRT Reference Documentation

Crypt2

Chilkat encryption component.

Object Creation

Chilkat.Crypt2 obj = new Chilkat.Crypt2();

Properties

public bool AbortCurrent {get; set; }

Introduced in version 9.5.0.58

When set to true, causes the currently running method to abort. Methods that always finish quickly (i.e.have no length file operations or network communications) are not affected. If no method is running, then this property is automatically reset to false when the next method is called. When the abort occurs, this property is reset to false. Both synchronous and asynchronous method calls can be aborted. (A synchronous method call could be aborted by setting this property from a separate thread.)

public int BCryptWorkFactor {get; set; }

Introduced in version 9.5.0.65

The BCrypt work factor to be used for the BCryptHash and BCryptVerify. This is the log2 of the number of rounds of hashing to apply. For example, if the work (cost) factor is 12, then 2^12 rounds of hashing are applied. The purpose of this cost factor is to make the BCrypt computation expensive enought to prevent brute-force attacks. (Any complaints about BCrypt "not being fast enough" will be ignored.)

This property must have a value ranging from 4 to 31 inclusive.

The default value is 10.

public int BlockSize {get; }

The block-size (in bytes) of the selected encryption algorithm. For example, if the CryptAlgorithm property is set to "aes", the BlockSize property is automatically set to 16. The block-size for the ARC4 streaming encryption algorithm is 1.

public bool CadesEnabled {get; set; }

Applies to all methods that create PKCS7 signatures. To create a CAdES-BES signature, set this property equal to true. The default value of this property is false.

CAdES BES Detached Signature

CAdES BES Attached (Opaque) Signature

public string CadesSigPolicyHash {get; set; }

Applies to all methods that create PKCS7 signatures. To create a CAdES-EPES signature, set the CadesEnabled property = true, and also provide values for each of the following properties: CadesSigPolicyHash, CadesSigPolicyId, and CadesSigPolicyUri. For example (in pseudo-code):

cryptObj.CadesSigPolicyId = "2.16.76.1.7.1.1.1"
cryptObj.CadesSigPolicyUri = "http://politicas.icpbrasil.gov.br/PA_AD_RB.der"
cryptObj.CadesSigPolicyHash = "rySugyKaMhiMR8Y/o5yuU2A2bF0="
Note: Do NOT use the values above. They are only provided as an example to show valid values. For example, the Policy ID is an OID. The Policy URI is a typically a URL to a DER encoded policy file, and the Policy Hash is a base64 encoded hash.

public string CadesSigPolicyId {get; set; }

See the description for the CadesSigPolicyHash property above.

public string CadesSigPolicyUri {get; set; }

See the description for the CadesSigPolicyHash property above.

public string Charset {get; set; }

Controls the character encoding of the text encrypted, signed, hashed or compressed. This property is relevant wherever strings are used as inputs or outputs.

When working with strings, it is important to know the exact bytes that are being encrypted/hashed/signed/compressed. This is critical when interoperating with other systems. If your application is sending an encrypted string to another system that will decrypt it, you will need to know the encoding of the string that is expected on the receiving end (after decryption). If you pass Unicode data (2 byte per character) to the encryptor, subsequent decryption will reproduce the original Unicode. However, it may be that your program works with Unicode strings, but the recipient of the encrypted data works with iso-8859-1 strings. In such a case, setting the Charset property to "iso-8859-1" causes the character data to be automatically converted to the Charset before being encrypted (or compressed, or hashed, or signed). The set of valid charsets is listed below:


hex
base64
    * "hex" and "base64" are special values that allow for binary (non-text) encoded data to be passed to any method where the input data is a string.
       Rather than converting to an actual charset (such as utf-8, iso-8859-1), the binary data is decoded, and the decoded bytes are passed
        to the underlying encryptor, hashing, signing, etc.
ANSI
us-ascii
unicode
unicodefffe
iso-8859-1
iso-8859-2
iso-8859-3
iso-8859-4
iso-8859-5
iso-8859-6
iso-8859-7
iso-8859-8
iso-8859-9
iso-8859-13
iso-8859-15
windows-874
windows-1250
windows-1251
windows-1252
windows-1253
windows-1254
windows-1255
windows-1256
windows-1257
windows-1258
utf-7
utf-8
utf-32
utf-32be
shift_jis
gb2312
ks_c_5601-1987
big5
iso-2022-jp
iso-2022-kr
euc-jp
euc-kr
macintosh
x-mac-japanese
x-mac-chinesetrad
x-mac-korean
x-mac-arabic
x-mac-hebrew
x-mac-greek
x-mac-cyrillic
x-mac-chinesesimp
x-mac-romanian
x-mac-ukrainian
x-mac-thai
x-mac-ce
x-mac-icelandic
x-mac-turkish
x-mac-croatian
asmo-708
dos-720
dos-862
ibm037
ibm437
ibm500
ibm737
ibm775
ibm850
ibm852
ibm855
ibm857
ibm00858
ibm860
ibm861
ibm863
ibm864
ibm865
cp866
ibm869
ibm870
cp875
koi8-r
koi8-u

Using "hex" or "base64" for encoded binary data input.

public string CipherMode {get; set; }

Controls the cipher mode for block encryption algorithms (AES, Blowfish,TwoFish, DES, 3DES, RC2). Possible values are "CBC" (the default) , "ECB", "CTR", "OFB", "GCM", and "CFB". These acronyms have the following meanings:

  • CBC: Cipher Block Chaining,
  • ECB: Electronic CookBook
  • CTR: Counter Mode
  • CFB: Cipher Feedback
  • OFB: Output Feedback
  • GCM: Galois/Counter Mode

(see http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation )

Note: Prior to Chilkat v9.5.0.55, the CFB mode is only implemented for AES, Blowfish, and DES/3DES, and the CTR mode is only implemented for AES.

Starting in v9.5.0.55 CFB and OFB modes are useable with all encryption algorithms, and GCM (Galois/Counter Mode) is available with any cipher having a 16-byte block size, such as AES and Twofish. CFB, OFB, CTR, and GCM modes convert block ciphers into stream ciphers. In these modes of operation, the PaddingScheme property is unused because no padding occurs.

public string CompressionAlgorithm {get; set; }

This property is deprecated. It will be removed in a future version.

This property is deprecated. The only possible value is "BZIP2". The compression functionality in Crypt2 is legacy and existed long before the general compression functionality that is currently offered in Chilkat.Compression. The Chilkat.Compression API should be used instead.

public string CryptAlgorithm {get; set; }

Selects the encryption algorithm for encrypting and decrypting. Possible values are: "chacha20", "pki", "aes", "blowfish", "blowfish2", "des", "3des", "rc2", "arc4", "twofish", "pbes1" and "pbes2". The "pki" encryption algorithm isn't a specific algorithm, but instead tells the component to encrypt/decrypt using public-key encryption with digital certificates. The other choices are symmetric encryption algorithms that do not involve digital certificates and public/private keys.

The original Chilkat implementation of Blowfish has a 4321 byte-swapping issue (the results are 4321 byte-swapped). The new implementation ("blowfish2") does not byte swap. This should be used for compatibility with other Blowfish software.

Password-based encryption (PBE) is selected by setting this property to "pbes1" or "pbes2". Password-based encryption is defined in the PKCS5 Password-Based Cryptography Standard at https://tools.ietf.org/html/rfc2898. If PBE is used, the underlying encryption algorithm is specified by the PbesAlgorithm property. The underlying encryption (PbesAlgorithm) for PBES1 is limited to 56-bit DES or 64-bit RC2.

Note:The chacha20 algorithm is introduced in Chilkat v9.5.0.55.

ChaCha20 Encryption

public string DebugLogFilePath {get; set; }

If set to a file path, causes each Chilkat method or property call to automatically append it's LastErrorText to the specified log file. The information is appended such that if a hang or crash occurs, it is possible to see the context in which the problem occurred, as well as a history of all Chilkat calls up to the point of the problem. The VerboseLogging property can be set to provide more detailed information.

This property is typically used for debugging the rare cases where a Chilkat method call hangs or generates an exception that halts program execution (i.e. crashes). A hang or crash should generally never happen. The typical causes of a hang are:

  1. a timeout related property was set to 0 to explicitly indicate that an infinite timeout is desired,
  2. the hang is actually a hang within an event callback (i.e. it is a hang within the application code), or
  3. there is an internal problem (bug) in the Chilkat code that causes the hang.

public string EncodingMode {get; set; }

Controls the encoding of binary data to a printable string for many methods. The valid modes are "Base64", "modBase64", "base64url", "Base32", "Base58", "UU", "QP" (for quoted-printable), "URL" (for url-encoding), "Hex", "Q", "B", "url_oauth", "url_rfc1738", "url_rfc2396", "url_rfc3986", "fingerprint", or "decimal".

The "fingerprint" and"decimal" encodings are introduced in Chilkat v9.5.0.55.

The "fingerprint" encoding is a lowercase hex encoding where each hex digit is separated by a colon character. For example: 6a:de:e0:af:56:f8:0c:04:11:5b:ef:4d:49:ad:09:23

The "decimal" encoding is for converting large decimal integers to/from a big-endian binary representation. For example, the decimal string "72623859790382856" converts to the bytes 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08.

Binary Encodings Supported by Chilkat

public bool FirstChunk {get; set; }

Chilkat Crypt2 provides the ability to feed the encryption/decryption methods with chunks of data. This allows a large amount of data, or a data stream, to be fed piecemeal for encrypting or decrypting. It applies to all symmetric algorithms currently supported (AES, Blowfish, Twofish, 3DES, RC2, DES, ARC4), and all algorithms supported in the future.

The default value for both FirstChunk and LastChunk is true. This means when an Encrypt* or Decrypt* method is called, it is both the first and last chunk (i.e. it's the entire amount of data to be encrypted or decrypted).

If you wish to feed the data piecemeal, do this:

  1. Set FirstChunk = true, LastChunk = false for the first chunk of data.
  2. For all "middle" chunks (i.e. all chunks except for the final chunk) set FirstChunk = false and LastChunk = false.
  3. For the final chunk, set FirstChunk = false and LastChunk = true

There is no need to worry about feeding data according to the block size of the encryption algorithm. For example, AES has a block size of 16 bytes. Data may be fed in chunks of any size. The Chilkat Crypt2 component will buffer the data. When the final chunk is passed, the output is padded to the algorithm's block size according to the PaddingScheme.

more info about FirstChunk/LastChunk

Encrypting/decrypting a data stream.

Encrypt File in Chunks using AES CBC

public string HashAlgorithm {get; set; }

Selects the hash algorithm used by methods that create hashes. The valid choices are "sha1", "sha256", "sha384", "sha512", "md2", "md5", "haval", "ripemd128", "ripemd160","ripemd256", or "ripemd320".

Note: SHA-2 designates a set of cryptographic hash functions that includes SHA-256, SHA-384, and SHA-512. Chilkat by definition supports "SHA-2" because it supports these algorithms.

Note: The HAVAL hash algorithm is affected by two other properties: HavalRounds and KeyLength.

  • The HavalRounds may have values of 3, 4, or 5.
  • The KeyLength may have values of 128, 160, 192, 224, or 256.

public int HavalRounds {get; set; }

Applies to the HAVAL hash algorithm only and must be set to the integer value 3, 4, or 5. The default value is 3.

public int HeartbeatMs {get; set; }

The number of milliseconds between each AbortCheck event callback. The AbortCheck callback allows an application to abort some methods call prior to completion. If HeartbeatMs is 0 (the default), no AbortCheck event callbacks will fire.

The methods with event callbacks are: CkDecryptFile, CkEncryptFile, HashFile, and HashFileENC.

public bool IncludeCertChain {get; set; }

Only applies when creating digital signatures. If true (the default), then additional certificates (if any) in the chain of authentication are included in the PKCS7 digital signature.

public int InitialCount {get; set; }

Introduced in version 9.5.0.55

The initial counter for the ChaCha20 encryption algorithm. The default value is 0.

public int IterationCount {get; set; }

Iteration count to be used with password-based encryption (PBE). Password-based encryption is defined in the PKCS5 Password-Based Cryptography Standard at http://www.rsa.com/rsalabs/node.asp?id=2127

The purpose of the iteration count is to increase the computation required to encrypt and decrypt. A larger iteration count makes cracking via exhaustive search more difficult. The default value is 1024.

public byte[] IV {get; set; }

The initialization vector to be used with symmetric encryption algorithms (AES, Blowfish, Twofish, etc.). If left unset, no initialization vector is used.

public int KeyLength {get; set; }

The key length in bits for symmetric encryption algorithms. The default value is 256.

public bool LastChunk {get; set; }

(See the description for the FirstChunk property.)

Encrypting/decrypting a data stream.

Encrypt File in Chunks using AES CBC

public string LastErrorHtml {get; }

Provides information in HTML format about the last method/property called. If a method call returns a value indicating failure, or behaves unexpectedly, examine this property to get more information.

public string LastErrorText {get; }

Provides information in plain-text format about the last method/property called. If a method call returns a value indicating failure, or behaves unexpectedly, examine this property to get more information.

Concept of LastErrorText

LastErrorText Standard Information

public string LastErrorXml {get; }

Provides information in XML format about the last method/property called. If a method call returns a value indicating failure, or behaves unexpectedly, examine this property to get more information.

public bool LastMethodSuccess {get; set; }

Introduced in version 9.5.0.52

Indicate whether the last method call succeeded or failed. A value of true indicates success, a value of false indicates failure. This property is automatically set for method calls. It is not modified by property accesses. The property is automatically set to indicate success for the following types of method calls:

  • Any method that returns a string.
  • Any method returning a Chilkat object, binary bytes, or a date/time.
  • Any method returning a standard boolean status value where success = true and failure = false.
  • Any method returning an integer where failure is defined by a return value less than zero.

Note: Methods that do not fit the above requirements will always set this property equal to true. For example, a method that returns no value (such as a "void" in C++) will technically always succeed.

public string MacAlgorithm {get; set; }

Introduced in version 9.5.0.55

Selects the MAC algorithm to be used for any of the Mac methods, such as MacStringENC, MacBytes, etc. The default value is "hmac". Possible values are "hmac" and "poly1305".

Poly1305 MAC

Demonstrates HMAC SHA256

public int NumSignerCerts {get; }

This property is set when a digital signature is verified. It contains the number of signer certificates. Each signing certificate can be retrieved by calling the GetSignerCert method, passing an index from 0 to NumSignerCerts-1.

Extract PKCS7 Signature Digest

Verify Opaque Signature and Retrieve Signing Certificates

public string OaepHash {get; set; }

Introduced in version 9.5.0.67

Selects the hash algorithm for use within OAEP padding when encrypting using "pki" with RSAES-OAEP. The valid choices are "sha1", "sha256", "sha384", "sha512",

RSAES-OAEP Encrypt String with AES-128 Content Encryption and SHA256

public string OaepMgfHash {get; set; }

Introduced in version 9.5.0.71

Selects the MGF hash algorithm for use within OAEP padding when encrypting using "pki" with RSAES-OAEP. The valid choices are "sha1", "sha256", "sha384", "sha512", The default is "sha1".

public bool OaepPadding {get; set; }

Introduced in version 9.5.0.67

Selects the RSA encryption scheme when encrypting using "pki" (with a certificate and private key). The default value is false, which selects RSAES_PKCS1-V1_5. If set to true, then RSAES_OAEP is used.

RSAES-OAEP Encrypt String with AES-128 Content Encryption and SHA256

public int PaddingScheme {get; set; }

The padding scheme used by block encryption algorithms such as AES (Rijndael), Blowfish, Twofish, RC2, DES, 3DES, etc. Block encryption algorithms pad encrypted data to a multiple of algorithm's block size. The default value of this property is 0.

Possible values are:

0 = RFC 1423 padding scheme: Each padding byte is set to the number of padding bytes. If the data is already a multiple of algorithm's block size bytes, an extra block is appended each having a value equal to the block size. (for example, if the algorithm's block size is 16, then 16 bytes having the value 0x10 are added.). (This is also known as PKCS5 padding: PKCS #5 padding string consists of a sequence of bytes, each of which is equal to the total number of padding bytes added. )

1 = FIPS81 (Federal Information Processing Standards 81) where the last byte contains the number of padding bytes, including itself, and the other padding bytes are set to random values.

2 = Each padding byte is set to a random value. The decryptor must know how many bytes are in the original unencrypted data.

3 = Pad with NULLs. (If already a multiple of the algorithm's block size, no padding is added).

4 = Pad with SPACE chars(0x20). (If already a multiple of algorithm's block size, no padding is added).

public string PbesAlgorithm {get; set; }

If the CryptAlgorithm property is set to "pbes1" or "pbes2", this property specifies the underlying encryption algorithm to be used with password-based encryption (PBE). Password-based encryption is defined in the PKCS5 Password-Based Cryptography Standard at http://www.rsa.com/rsalabs/node.asp?id=2127

public string PbesPassword {get; set; }

The password to be used with password-based encryption (PBE). Password-based encryption is defined in the PKCS5 Password-Based Cryptography Standard at http://www.rsa.com/rsalabs/node.asp?id=2127

public string Pkcs7CryptAlg {get; set; }

When the CryptAlgorithm property is "PKI" to select PKCS7 public-key encryption, this selects the underlying symmetric encryption algorithm. Possible values are: "aes", "des", "3des", and "rc2". The default value is "aes".

RSAES-OAEP Encrypt String with AES-128 Content Encryption and SHA256

public int Rc2EffectiveKeyLength {get; set; }

The effective key length (in bits) for the RC2 encryption algorithm. When RC2 is used, both the KeyLength and Rc2EffectiveKeyLength properties should be set. For RC2, both should be between 8 and 1024 (inclusive).

public byte[] Salt {get; set; }

The salt to be used with password-based encryption (PBE). Password-based encryption is defined in the PKCS5 Password-Based Cryptography Standard at http://www.rsa.com/rsalabs/node.asp?id=2127

To clarify: This property is used in encryption when the CryptAlgorithm is set to "pbes1" or "pbes2". Also note that it is not used by the Pbkdf1 or Pbkdf2 methods, as the salt is passed in an argument to those methods.

public byte[] SecretKey {get; set; }

The binary secret key used for symmetric encryption (Aes, Blowfish, Twofish, ChaCha20, ARC4, 3DES, RC2, etc.). The secret key must be identical for decryption to succeed. The length in bytes of the SecretKey must equal the KeyLength/8.

Generate Encryption Key

public string SigningAlg {get; set; }

Introduced in version 9.5.0.67

This property selects the signature algorithm for the OpaqueSign*, Sign*, and CreateDetachedSignature, CreateP7M, and CreateP7S methods. The default value is "PKCS1-v1_5". This can be set to "RSASSA-PSS" (or simply "pss") to use the RSASSA-PSS signature scheme.

Note: This property only applies when the private key is an RSA private key. It does not apply for ECC or DSA private keys.

RSASSA-PSS Sign String to Create Base64 PCKS7 Signature

public string UuFilename {get; set; }

When UU encoding, this is the filename to be embedded in UU encoded output. The default is "file.dat". When UU decoding, this is the filename found in the UU encoded input.

UU Encoding and Decoding

public string UuMode {get; set; }

When UU encoding, this is the file permissions mode to be embedded in UU encoded output. The default is "644". When UU decoding, this property is set to the mode found in the UU encoded input.

public bool VerboseLogging {get; set; }

If set to true, then the contents of LastErrorText (or LastErrorXml, or LastErrorHtml) may contain more verbose information. The default value is false. Verbose logging should only be used for debugging. The potentially large quantity of logged information may adversely affect peformance.

public string Version {get; }

Version of the component/library, such as "9.5.0.63"

Methods

public void AddEncryptCert(Cert cert);

Adds a certificate to be used for public-key encryption. (To use public-key encryption with digital certificates, set the CryptAlgorithm property = "pki".) To encrypt with more than one certificate , call AddEncryptCert once per certificate.

Encrypt a file to a PKCS7 encrypted message using multiple certificates from different users

public bool AddPfxSourceData(byte[] pfxBytes, string pfxPassword);

Adds a PFX to the object's internal list of sources to be searched for certificates and private keys when decrypting. Multiple PFX sources can be added by calling this method once for each. (On the Windows operating system, the registry-based certificate stores are also automatically searched, so it is commonly not required to explicitly add PFX sources.)

The pfxBytes contains the bytes of a PFX file (also known as PKCS12 or .p12).

Returns true for success, false for failure.

public bool AddPfxSourceFile(string pfxFilePath, string pfxPassword);

Adds a PFX file to the object's internal list of sources to be searched for certificates and private keys when decrypting. Multiple PFX files can be added by calling this method once for each. (On the Windows operating system, the registry-based certificate stores are also automatically searched, so it is commonly not required to explicitly add PFX sources.)

The pfxFilePath contains the bytes of a PFX file (also known as PKCS12 or .p12).

Returns true for success, false for failure.

public string AesKeyUnwrap(string kek, string wrappedKeyData, string encoding);

Introduced in version 9.5.0.66

Implements the AES Key Wrap Algorithm (RFC 3394) for unwrapping. The kek is the Key Encryption Key (the AES key used to unwrap the wrappedKeyData). The arguments and return value are binary encoded strings using the encoding specified by encoding (which can be "base64", "hex", "base64url", etc.) The full list of supported encodings is available at the link below.

The kek should be an AES key of 16 bytes, 24 bytes, or 32 bytes (i.e. 128-bits, 192- bits, or 256-bits). For example, if passed as a hex string, then the kek should be 32 chars in length, 48 chars, or 64 chars (because each byte is represented as 2 chars in hex).

The wrappedKeyData contains the data to be unwrapped. The result, if decoded, is 8 bytes less than the wrapped key data. For example, if a 256-bit AES key (32 bytes) is wrapped, the size of the wrapped key data is 40 bytes. Unwrapping restores it to the original 32 bytes.

Returns null on failure

AES Key Wrap / Unwrap

public string AesKeyWrap(string kek, string keyData, string encoding);

Introduced in version 9.5.0.66

Implements the AES Key Wrap Algorithm (RFC 3394). The kek is the Key Encryption Key (the AES key used to encrypt the keyData). The arguments and return value are binary encoded strings using the encoding specified by encoding (which can be "base64", "hex", "base64url", etc.) The full list of supported encodings is available at the link below.

The kek should be an AES key of 16 bytes, 24 bytes, or 32 bytes (i.e. 128-bits, 192- bits, or 256-bits). For example, if passed as a hex string, then the kek should be 32 chars in length, 48 chars, or 64 chars (because each byte is represented as 2 chars in hex).

The keyData contains the data to be key wrapped. It must be a multiple of 64-bits in length. In other words, if the keyData is decoded to binary, it should be a number of bytes that is a multiple of 8.

The return string, if decoded to binary bytes, is equal to the size of the key data + 8 additional bytes.

Returns null on failure

AES Key Wrap / Unwrap

public string BCryptHash(string password);

Introduced in version 9.5.0.65

Computes and returns a bcrypt hash of the password. The number of rounds of hashing is determined by the BCryptWorkFactor property.

Returns null on failure

BCrypt Hash a Password

public bool BCryptVerify(string password, string bcryptHash);

Introduced in version 9.5.0.65

Verifies the password against a previously computed BCrypt hash. Returns true if the password matches the bcryptHash. Returns false if the password does not match.

Returns true for success, false for failure.

BCrypt Verify a Password (Check if Password is Correct)

public string BytesToString(byte[] inData, string charset);

Utility method to convert bytes to a string -- interpreting the bytes according to the charset specified.

Returns null on failure

public byte[] ByteSwap4321(byte[] data);

Convenience method for byte swapping between little-endian byte ordering and big-endian byte ordering.

Returns an empty byte array on failure

(awaitable) public IAsyncOperation<bool> CkDecryptFileAsync(string srcFile, string destFile);

File-to-file decryption. There is no limit to the size of the file that can be decrypted because the component will operate in streaming mode internally.

Returns true for success, false for failure.

AES Encrypt and Decrypt a File

(awaitable) public IAsyncOperation<bool> CkEncryptFileAsync(string srcFile, string destFile);

File-to-file encryption. There is no limit to the size of the file that can be encrypted because the component will operate in streaming mode internally.

Returns true for success, false for failure.

AES Encrypt and Decrypt a File

Encrypt File using X.509 Certificate using AES in CBC Mode

public void ClearEncryptCerts();

Clears the internal list of digital certificates to be used for public-key encryption.

public byte[] CompressBytes(byte[] data);

Bzip2 compresses a byte array and returns the compressed bytes.

This is a legacy method that should not be used in new development. It will not be marked as deprecated or removed from future APIs because existing applications may have data already compressed using this method.

The output of this method includes an 8-byte header composed of a 4-byte magic number (0xB394A7E1) and the 4-byte length of the uncompressed data.

Returns an empty byte array on failure

public string CompressBytesENC(byte[] data);

Same as CompressBytes, except an encoded string is returned. The output encoding is specified by the EncodingMode property.

Returns null on failure

Supported Binary Encodings

public byte[] CompressString(string str);

Compresses a string and returns the compressed bytes. Prior to compressing, the string is converted to a byte representation such as utf-8, utf-16, etc. as determined by the Charset property. Otherwise, this method is the same as the CompressBytes method.

Returns an empty byte array on failure

public string CompressStringENC(string str);

Compresses a string and returns the encoded compressed bytes. Prior to compressing, the string is converted to a byte representation such as utf-8, utf-16, etc. as determined by the Charset property. The output encoding is specified by the EncodingMode property. Otherwise, this method is the same as the CompressBytes method.

Returns null on failure

Supported Binary Encodings

Crypt2 Compression Example

public uint CrcBytes(string crcAlg, byte[] byteData);

Introduced in version 9.5.0.38

Calculates a CRC for in-memory byte data. To compute the CRC used in the Zip file format, pass "CRC-32" for the crcAlg. (The crcAlg argument provides the flexibility to add additional CRC algorithms on an as-needed basis in the future.)

(awaitable) public IAsyncOperation<uint> CrcFileAsync(string crcAlg, string path);

Introduced in version 9.5.0.38

Calculates a CRC for the contents of a file. To compute the CRC used in the Zip file format, pass "CRC-32" for the crcAlg. (The crcAlg argument provides the flexibility to add additional CRC algorithms on an as-needed basis in the future.) A value of 0 is returned if the file is unable to be read. Given that there is a 1 in 4 billion chance of having an actual CRC of 0, an application might choose to react to a 0 return value by testing to see if the file can be opened and read.

public bool CreateDetachedSignature(string inFilePath, string sigFilePath);

Digitally signs a file and writes the digital signature to a separate output file (a PKCS#7 signature file). The input file (inFilePath) is unmodified. A certificate for signing must be specified by calling SetSigningCert or SetSigningCert2 prior to calling this method.

This method is equivalent to CreateP7S. The CreateP7S method was added to clarify the format of the signature file that is created.

Returns true for success, false for failure.

public bool CreateP7M(string inFilename, string p7mPath);

Digitally signs a file and creates a .p7m (PKCS #7 Message) file that contains both the signature and original file content. The input file (inFilename) is unmodified. A certificate for signing must be specified by calling SetSigningCert or SetSigningCert2 prior to calling this method.

To sign with a particular hash algorithm, set the HashAlgorithm property. Valid hash algorithms for signing are "sha256", "sha1", "sha384", "sha512", "md5", and "md2".

Returns true for success, false for failure.

CAdES BES Attached (Opaque) Signature

Examine the Contents of a .p7m by Converting to XML

Create P7M Using Pre-Installed Windows Certificate

public bool CreateP7S(string inFilename, string p7sPath);

Digitally signs a file and creates a .p7s (PKCS #7 Signature) signature file. The input file (inFilename) is unmodified. The output file (p7sPath) contains only the signature and not the original data. A certificate for signing must be specified by calling SetSigningCert or SetSigningCert2 prior to calling this method.

To sign with a particular hash algorithm, set the HashAlgorithm property. Valid hash algorithms for signing are "sha256", "sha1", "sha384", "sha512", "md5", and "md2".

Returns true for success, false for failure.

CAdES BES Detached Signature

public byte[] Decode(string str, string encoding);

Decode binary data from an encoded string. The encoding can be set to any of the following strings: "base64", "hex", "quoted-printable", "url", "base32", "Q", "B", "url_rc1738", "url_rfc2396", "url_rfc3986", "url_oauth", "uu", "modBase64", or "html" (for HTML entity encoding).

Returns an empty byte array on failure

public string DecodeString(string inStr, string charset, string encoding);

Decodes from an encoding back to the original string. The encoding can be set to any of the following strings: "base64", "hex", "quoted-printable", "url", "base32", "Q", "B", "url_rc1738", "url_rfc2396", "url_rfc3986", "url_oauth", "uu", "modBase64", or "html" (for HTML entity encoding).

Returns null on failure

UU Encoding and Decoding

public bool DecryptBd(BinData bd);

Introduced in version 9.5.0.67

In-place decrypts the contents of bd. The minimal set of properties that should be set before decrypting are: CryptAlgorithm, SecretKey. Other properties that control encryption are: CipherMode, PaddingScheme, KeyLength, IV.

Returns true for success, false for failure.

Example for both AES-128 and ChaCha20 to Encrypt Binary Data

RSAES-OAEP Encrypt/Decrypt Binary Data with AES-128 and SHA56

openssl enc decrypt

public byte[] DecryptBytes(byte[] data);

Decrypts a byte array and returns the unencrypted byte array. The property settings used when encrypting the data must match the settings when decrypting. Specifically, the CryptAlgorithm, CipherMode, PaddingScheme, KeyLength, IV, and SecretKey properties must match.

Returns an empty byte array on failure

public byte[] DecryptBytesENC(string str);

Decrypts string-encoded encrypted data and returns the unencrypted byte array. Data encrypted with EncryptBytesENC can be decrypted with this method. The property settings used when encrypting the data must match the settings when decrypting. Specifically, the EncodingMode, CryptAlgorithm, CipherMode, PaddingScheme, KeyLength, IV, and SecretKey properties must match.

Returns an empty byte array on failure

Supported Binary Encodings

public string DecryptEncoded(string encodedEncryptedData);

Encrypted data is passed to this method as an encoded string (base64, hex, etc.). This method first decodes the input data according to the EncodingMode property setting. It then decrypts and re-encodes using the EncodingMode setting, and returns the decrypted data in encoded string form.

Returns null on failure

AEAD AES 128-bit GCM

public bool DecryptSb(BinData bdIn, StringBuilder sbOut);

Introduced in version 9.5.0.67

Decrypts the contents of bdIn to sbOut. The decrypted string is appended to sbOut. The minimal set of properties that should be set before ecrypting are: CryptAlgorithm, SecretKey. Other properties that control encryption are: CipherMode, PaddingScheme, KeyLength, IV.

Returns true for success, false for failure.

AES and CHACHA20 Encrypt/Decrypt Text

public bool DecryptSecureENC(string cipherText, SecureString secureStr);

Introduced in version 9.5.0.71

Identical to DecryptStringENC, except the decrypts the cipherText and appends the decrypted string to the secureStr.

Returns true for success, false for failure.

Encrypt / Decrypt Secure Strings

(awaitable) public IAsyncOperation<bool> DecryptStreamAsync(Stream strm);

Introduced in version 9.5.0.56

Decrypts a stream. Internally, the strm's source is read, decrypted, and the decrypted data written to the strm's sink. It does this in streaming fashion. Extremely large or even infinite streams can be decrypted with stable ungrowing memory usage.

Returns true for success, false for failure.

Streaming Encryption

public string DecryptString(byte[] data);

The reverse of EncryptString.

Decrypts encrypted byte data and returns the original string. The property settings used when encrypting the string must match the settings when decrypting. Specifically, the Charset, CryptAlgorithm, CipherMode, PaddingScheme, KeyLength, IV, and SecretKey properties must match.

Returns null on failure

Explaining the Importance of the Charset

public string DecryptStringENC(string str);

The reverse of EncryptStringENC.

Decrypts string-encoded encrypted data and returns the original string. The property settings used when encrypting the string must match the settings when decrypting. Specifically, the Charset, EncodingMode, CryptAlgorithm, CipherMode, PaddingScheme, KeyLength, IV, and SecretKey properties must match.

Returns null on failure

Explaining the Importance of the Charset

Supported Binary Encodings

public string Encode(byte[] byteData, string encoding);

Encode binary data to base64, hex, quoted-printable, or URL-encoding. The encoding can be set to any of the following strings: "base64", "hex", "quoted-printable" (or "qp"), "url", "base32", "Q", "B", "url_rc1738", "url_rfc2396", "url_rfc3986", "url_oauth", "uu", "modBase64", or "html" (for HTML entity encoding).

Returns null on failure

public string EncodeString(string strToEncode, string charsetName, string toEncodingName);

Encodes a string. The toEncodingName can be set to any of the following strings: "base64", "hex", "quoted-printable", "url", "base32", "Q", "B", "url_rc1738", "url_rfc2396", "url_rfc3986", "url_oauth", "uu", "modBase64", or "html" (for HTML entity encoding). The charsetName is important, and usually you'll want to specify "ansi". For example, if the string "ABC" is to be encoded to "hex" using ANSI, the result will be "414243". However, if "unicode" is used, the result is "410042004300".

Returns null on failure

Supported Binary Encodings

public bool EncryptBd(BinData bd);

Introduced in version 9.5.0.67

In-place encrypts the contents of bd. The minimal set of properties that should be set before encrypting are: CryptAlgorithm, SecretKey. Other properties that control encryption are: CipherMode, PaddingScheme, KeyLength, IV. When decrypting, all property settings must match otherwise the result is garbled data.

Returns true for success, false for failure.

Example for both AES-128 and ChaCha20 to Encrypt Binary Data

RSAES-OAEP Encrypt/Decrypt Binary Data with AES-128 and SHA56

public byte[] EncryptBytes(byte[] data);

Encrypts a byte array. The minimal set of properties that should be set before encrypting are: CryptAlgorithm, SecretKey. Other properties that control encryption are: CipherMode, PaddingScheme, KeyLength, IV. When decrypting, all property settings must match otherwise garbled data is returned.

Returns an empty byte array on failure

public string EncryptBytesENC(byte[] data);

Encrypts a byte array and returns the encrypted data as an encoded (printable) string. The minimal set of properties that should be set before encrypting are: CryptAlgorithm, SecretKey, EncodingMode. Other properties that control encryption are: CipherMode, PaddingScheme, KeyLength, IV. When decrypting, all property settings must match otherwise garbled data is returned. The encoding of the string that is returned is controlled by the EncodingMode property, which can be set to "Base64", "QP", or "Hex".

Returns null on failure

Supported Binary Encodings

public string EncryptEncoded(string str);

The input string is first decoded according to the encoding algorithm specified by the EncodingMode property (such as base64, hex, etc.) It is then encrypted according to the encryption algorithm specified by CryptAlgorithm. The resulting encrypted data is encoded (using EncodingMode) and returned.

Returns null on failure

AEAD AES 128-bit GCM

public bool EncryptSb(StringBuilder sbIn, BinData bdOut);

Introduced in version 9.5.0.67

Encrypts the contents of sbIn to bdOut. The minimal set of properties that should be set before ecrypting are: CryptAlgorithm, SecretKey. Other properties that control encryption are: CipherMode, PaddingScheme, KeyLength, IV.

Returns true for success, false for failure.

AES and CHACHA20 Encrypt/Decrypt Text

public string EncryptSecureENC(SecureString secureStr);

Introduced in version 9.5.0.71

Identical to EncryptStringENC, except the clear-text contained within the secureStr is encrypted and returned.

Returns null on failure

Encrypt / Decrypt Secure Strings

(awaitable) public IAsyncOperation<bool> EncryptStreamAsync(Stream strm);

Introduced in version 9.5.0.56

Encrypts a stream. Internally, the strm's source is read, encrypted, and the encrypted data written to the strm's sink. It does this in streaming fashion. Extremely large or even infinite streams can be encrypted with stable ungrowing memory usage.

Returns true for success, false for failure.

Streaming Encryption

public byte[] EncryptString(string str);

Encrypts a string and returns the encrypted data as a byte array. The minimal set of properties that should be set before encrypting are: CryptAlgorithm, SecretKey, Charset. Other properties that control encryption are: CipherMode, PaddingScheme, KeyLength, IV. When decrypting, all property settings must match otherwise garbled data is returned. The Charset property controls the exact bytes that get encrypted. Languages such as VB.NET, C#, and Visual Basic work with Unicode strings, thus the input string is Unicode. If Unicode is to be encrypted (i.e. 2 bytes per character) then set the Charset property to "Unicode". To implicitly convert the string to another charset before the encryption is applied, set the Charset property to something else, such as "iso-8859-1", "Shift_JIS", "big5", "windows-1252", etc. The complete list of possible charsets is listed here:


us-ascii
unicode
unicodefffe
iso-8859-1
iso-8859-2
iso-8859-3
iso-8859-4
iso-8859-5
iso-8859-6
iso-8859-7
iso-8859-8
iso-8859-9
iso-8859-13
iso-8859-15
windows-874
windows-1250
windows-1251
windows-1252
windows-1253
windows-1254
windows-1255
windows-1256
windows-1257
windows-1258
utf-7
utf-8
utf-32
utf-32be
shift_jis
gb2312
ks_c_5601-1987
big5
iso-2022-jp
iso-2022-kr
euc-jp
euc-kr
macintosh
x-mac-japanese
x-mac-chinesetrad
x-mac-korean
x-mac-arabic
x-mac-hebrew
x-mac-greek
x-mac-cyrillic
x-mac-chinesesimp
x-mac-romanian
x-mac-ukrainian
x-mac-thai
x-mac-ce
x-mac-icelandic
x-mac-turkish
x-mac-croatian
asmo-708
dos-720
dos-862
ibm037
ibm437
ibm500
ibm737
ibm775
ibm850
ibm852
ibm855
ibm857
ibm00858
ibm860
ibm861
ibm863
ibm864
ibm865
cp866
ibm869
ibm870
cp875
koi8-r
koi8-u

Returns an empty byte array on failure

Explaining the Importance of the Charset

public string EncryptStringENC(string str);

Encrypts a string and returns the encrypted data as an encoded (printable) string. The minimal set of properties that should be set before encrypting are: CryptAlgorithm, SecretKey, Charset, and EncodingMode. Other properties that control encryption are: CipherMode, PaddingScheme, KeyLength, IV. When decrypting (with DecryptStringENC), all property settings must match otherwise garbled data is returned. The Charset property controls the exact bytes that get encrypted. Languages such as VB.NET, C#, and Visual Basic work with Unicode strings, thus the input string is Unicode. If Unicode is to be encrypted (i.e. 2 bytes per character) then set the Charset property to "Unicode". To implicitly convert the string to another charset before the encryption is applied, set the Charset property to something else, such as "iso-8859-1", "Shift_JIS", "big5", "windows-1252", etc. (Refer to EncryptString for the complete list of charsets.)

The EncodingMode property controls the encoding of the string that is returned. It can be set to "Base64", "QP", or "Hex".

Returns null on failure

AES Encryption Example

Blowfish Encryption Example

3DES Encryption Example

ARC4 Encryption Example

PBES1 Password-Based Encryption

PBES2 Password-Based Encryption

RC2 Encryption Example

Twofish Encryption Example

Explaining the Importance of the Charset

Supported Binary Encodings

Binary Encodings Supported by Chilkat

public string GenEncodedSecretKey(string password, string encoding);

Important: In the v9.5.0.49 release, a bug involving this method was introduced: The encoding is ignored and instead the encoding used is the current value of the EncodingMode property. The workaround is to make sure the EncodingMode property is set to the value of the desired output encoding. This problem will be fixed in v9.5.0.50.

Identical to the GenerateSecretKey method, except it returns the binary secret key as a string encoded according to encoding, which may be "base64", "hex", "url", etc. Please see the documentation for GenerateSecretKey for more information.

Returns null on failure

public byte[] GenerateSecretKey(string password);

Hashes a string to a byte array that has the same number of bits as the current value of the KeyLength property. For example, if KeyLength is equal to 128 bits, then a 16-byte array is returned. This can be used to set the SecretKey property. In order to decrypt, the SecretKey must match exactly. To use "password-based" encryption, the password is passed to this method to generate a binary secret key that can then be assigned to the SecretKey property.

IMPORTANT: If you are trying to decrypt something encrypted by another party such that the other party provided you with the secret key, DO NOT use this method. This method is for transforming an arbitrary-length password into a binary secret key of the proper length. Please see this Chilkat blog post: Getting Started with AES Decryption

Returns an empty byte array on failure

Deriving a 256-bit AES Secret Key from a Password Using SHA256

PBKDF2 - Derive Key from Password

public string GenerateUuid();

Introduced in version 9.5.0.55

Generates a random UUID string having standard UUID format, such as "de305d54-75b4-431b-adb2-eb6b9e546014".

Note: This generates a "version 4 UUID" using random byte values. See RFC 4122.

Returns null on failure

Generate UUID

public string GenRandomBytesENC(int numBytes);

Generates numBytes random bytes and returns them as an encoded string. The encoding, such as base64, hex, etc. is controlled by the EncodingMode property.

Returns null on failure

Supported Binary Encodings

public Cert GetDecryptCert();

Introduced in version 9.5.0.46

Returns the last certificate used for public-key decryption.

Returns null on failure

public string GetEncodedAad(string encoding);

Introduced in version 9.5.0.55

Returns the authenticated additional data as an encoded string. The encoding argument can be set to any of the following strings: "base64", "hex", "quoted-printable", or "url".

The Aad is used when the CipherMode is "gcm" (Galois/Counter Mode), which is a mode valid for symmetric ciphers that have a block size of 16 bytes, such as AES or Twofish.

Returns null on failure

AEAD AES 128-bit GCM

public string GetEncodedAuthTag(string encoding);

Introduced in version 9.5.0.55

Returns the authentication tag as an encoded string. The encoding argument may be set to any of the following strings: "base64", "hex", "quoted-printable", or "url". The authentication tag is an output of authenticated encryption modes such as GCM when encrypting. When GCM mode decrypting, the authenticate tag is set by the application and is the expected result.

The authenticated tag plays a role when the CipherMode is "gcm" (Galois/Counter Mode), which is a mode valid for symmetric block ciphers that have a block size of 16 bytes, such as AES or Twofish.

Returns null on failure

AEAD AES 128-bit GCM

public string GetEncodedIV(string encoding);

Returns the initialization vector as an encoded string. The encoding argument can be set to any of the following strings: "base64", "hex", "quoted-printable", or "url".

Returns null on failure

public string GetEncodedKey(string encoding);

Returns the secret key as an encoded string. The encoding argument can be set to any of the following strings: "base64", "hex", "quoted-printable", or "url".

Returns null on failure

public string GetEncodedSalt(string encoding);

Returns the password-based encryption (PBE) salt bytes as an encoded string. The encoding argument can be set to any of the following strings: "base64", "hex", "quoted-printable", or "url".

Returns null on failure

public Cert GetLastCert();

Returns the last certificate used when verifying a signature. This method is deprecated. Applications should instead call GetSignerCert with an index of 0.

Returns null on failure

public string GetSignatureSigningTimeStr(int index);

The same as GetSignatureSigningTime, except the date/time is returned in RFC822 string format.

Returns null on failure

public Cert GetSignerCert(int index);

Gets the Nth certificate used for signing. This method can be called after verifying a digital signature to get the signer certs. The 1st certificate is at index 0. The NumSignerCerts property contains the total number of signing certificates. (Typically, a single certificate is used in creating a digital signature.)

Returns null on failure

Verify Opaque Signature and Retrieve Signing Certificates

public CertChain GetSignerCertChain(int index);

Introduced in version 9.5.0.40

Returns the full certificate chain for the Nth certificate used to for signing. Indexing begins at 0.

Returns null on failure

Verify Opaque Signature and Retrieve Signing Certificates

public string HashBdENC(BinData bd);

Introduced in version 9.5.0.66

Hashes the the bytes contained in bd and returns the hash as an encoded string.

The hash algorithm is specified by the HashAlgorithm property, The encoding is controlled by the EncodingMode property, which can be set to "base64", "hex", "base64url", or any of the encodings listed at the link below.

Returns null on failure

Binary Encodings Supported by Chilkat

SOAP WS-Security UsernameToken

public bool HashBeginBytes(byte[] data);

Begin hashing a byte stream. Call this method to hash the 1st chunk. Additional chunks are hashed by calling HashMoreBytes 0 or more times followed by a final call to HashFinal (or HashFinalENC) to retrieve the result. The hash algorithm is selected by the HashAlgorithm property setting.

Returns true for success, false for failure.

public bool HashBeginString(string strData);

Begin hashing a text stream. Call this method to hash the 1st chunk. Additional chunks are hashed by calling HashMoreString 0 or more times followed by a final call to HashFinal (or HashFinalENC) to retrieve the result. The hash algorithm is selected by the HashAlgorithm property setting.

Returns true for success, false for failure.

public byte[] HashBytes(byte[] data);

Hashes a byte array.

The hash algorithm is specified by the HashAlgorithm property, The encoding is controlled by the EncodingMode property, which can be set to "base64", "hex", "base64url", or any of the encodings listed at the link below.

Returns an empty byte array on failure

Hash Binary Data (SHA256 and other hash algorithms)

public string HashBytesENC(byte[] data);

Hashes a byte array and returns the hash as an encoded string.

The hash algorithm is specified by the HashAlgorithm property, The encoding is controlled by the EncodingMode property, which can be set to "base64", "hex", "base64url", or any of the encodings listed at the link below.

Returns null on failure

Supported Binary Encodings

Hash Binary Data (SHA256 and other hash algorithms)

(awaitable) public IAsyncOperation<byte[]> HashFileAsync(string path);

Hashes a file and returns the hash bytes.

The hash algorithm is specified by the HashAlgorithm property,

Any size file may be hashed because the file is hashed internally in streaming mode (keeping memory usage low and constant).

Returns an empty byte array on failure

Hash the Contents of a File (SHA256 and other hash algorithms)

(awaitable) public IAsyncOperation<string> HashFileENCAsync(string path);

Hashes a file and returns the hash as an encoded string.

The hash algorithm is specified by the HashAlgorithm property, The encoding is controlled by the EncodingMode property, which can be set to "base64", "hex", "base64url", or any of the encodings listed at the link below.

Any size file is supported because the file is hashed internally in streaming mode (keeping memory usage low and constant).

Returns null on failure

Compute Hash for a File (Example)

Supported Binary Encodings

public byte[] HashFinal();

Finalizes a multi-step hash computation and returns the hash bytes.

Returns an empty byte array on failure

public string HashFinalENC();

Finalizes a multi-step hash computation and returns the hash bytes encoded according to the EncodingMode property setting.

Returns null on failure

Supported Binary Encodings

public bool HashMoreBytes(byte[] data);

Adds more bytes to the hash currently under computation. (See HashBeginBytes)

Returns true for success, false for failure.

public bool HashMoreString(string strData);

Adds more text to the hash currently under computation. (See HashBeginString)

Returns true for success, false for failure.

public byte[] HashString(string str);

Hashes a string and returns a binary hash. The hash algorithm is specified by the HashAlgorithm property,

The Charset property controls the character encoding of the string that is hashed. Languages such as VB.NET, C#, and Visual Basic work with Unicode strings. If it is desired to hash Unicode directly (2 bytes/char) then set the Charset property to "Unicode". To implicitly convert to another charset before hashing, set the Charset property to the desired charset. For example, if Charset is set to "iso-8859-1", the input string is first implicitly converted to iso-8859-1 (1 byte per character) before hashing. The full list fo supported charsets is listed in the EncryptString method description.

IMPORTANT: Hash algorithms hash bytes. Changing the bytes passed to a hash algorithm changes the result. A character (i.e. a visible glyph) can have different byte representations. The byte representation is defined by the Charset. For example, 'A' in us-ascii is a single byte 0x41, whereas in utf-16 it is 2 bytes (0x41 0x00). The byte representation should be explicitly specified, otherwise unexpected results may occur.

Returns an empty byte array on failure

Hash the Contents of a String (SHA256 and other hash algorithms)

public string HashStringENC(string str);

Hashes a string and returns the hash bytes as an encoded string.

The hash algorithm is specified by the HashAlgorithm property, The encoding is controlled by the EncodingMode property, which can be set to "base64", "hex", "base64url", or any of the encodings listed at the link below.

The Charset property controls the character encoding of the string that is hashed. Languages such as VB.NET, C#, and Visual Basic work with Unicode strings. If it is desired to hash Unicode directly (2 bytes/char) then set the Charset property to "Unicode". To implicitly convert to another charset before hashing, set the Charset property to the desired charset. For example, if Charset is set to "iso-8859-1", the input string is first implicitly converted to iso-8859-1 (1 byte per character) before hashing. The full list of supported charsets is listed in the EncryptString method description.

Returns null on failure

Supported Binary Encodings

public bool HasSignatureSigningTime(int index);

This method can be called after a digital signature has been verified by one of the Verify* methods. Returns true if a signing time for the Nth certificate is available and can be retrieved by either the GetSignatureSigningTime or GetSignatureSigningTimeStr methods.

public byte[] HmacBytes(byte[] inBytes);

This method is deprecated. It will be removed in a future version.

Computes a keyed-Hash Message Authentication Code (HMAC or KHMAC), which is a type of message authentication code (MAC) calculated using a specific algorithm involving a cryptographic hash function in combination with a secret key. As with any MAC, it may be used to simultaneously verify both the data integrity and the authenticity of a message. Any iterative cryptographic hash function, such as MD5, SHA-1, SHA256, or any of the hash algorithms listed in the HashAlgorithm property, may be used in the calculation of an HMAC; the resulting MAC algorithm is termed HMAC-MD5, HMAC-SHA-1, etc. accordingly. The cryptographic strength of the HMAC depends upon the cryptographic strength of the underlying hash function, on the size and quality of the key and the size of the hash output length in bits.

The secret key is set by calling one of the following methods prior to calling this method: SetHmacKeyBytes, SetHmacKeyEncoded, or SetHmacKeyString.

The hash algorithm is specified by the HashAlgorithm property.

Note: If using Chilkat v9.5.0.55 or later, update your programs to use MacBytes instead (with the MacAlgorithm property set to "hmac").

Returns an empty byte array on failure

public string HmacBytesENC(byte[] inBytes);

This method is deprecated. It will be removed in a future version.

Computes an HMAC using a secret key and hash algorithm. The result is encoded to a string using the encoding (base64, hex, etc.) specified by the EncodingMode property.

The secret key is set by calling one of the following methods prior to calling this method: SetHmacKeyBytes, SetHmacKeyEncoded, or SetHmacKeyString.

The hash algorithm is specified by the HashAlgorithm property.

Note: If using Chilkat v9.5.0.55 or later, update your programs to use MacBytesEnc instead (with the MacAlgorithm property set to "hmac").

Returns null on failure

public byte[] HmacString(string inText);

This method is deprecated. It will be removed in a future version.

Computes an HMAC using a secret key and hash algorithm.

The secret key is set by calling one of the following methods prior to calling this method: SetHmacKeyBytes, SetHmacKeyEncoded, or SetHmacKeyString.

The hash algorithm is specified by the HashAlgorithm property.

Note: If using Chilkat v9.5.0.55 or later, update your programs to use MacString instead (with the MacAlgorithm property set to "hmac").

Returns an empty byte array on failure

public string HmacStringENC(string inText);

This method is deprecated. It will be removed in a future version.

Computes an HMAC using a secret key and hash algorithm. The result is encoded to a string using the encoding (base64, hex, etc.) specified by the EncodingMode property.

The secret key is set by calling one of the following methods prior to calling this method: SetHmacKeyBytes, SetHmacKeyEncoded, or SetHmacKeyString.

The hash algorithm is specified by the HashAlgorithm property.

Note: If using Chilkat v9.5.0.55 or later, update your programs to use MacStringENC instead (with the MacAlgorithm property set to "hmac").

Returns null on failure

public byte[] InflateBytes(byte[] data);

Decompresses data that was compressed with CompressBytes.

This is a legacy method that should not be used in new development. It will not be marked as deprecated or removed from future APIs because existing applications may have data already compressed using CompressBytes.

This method expects the input to begin with an 8-byte header composed of a 4-byte magic number (0xB394A7E1) and the 4-byte length of the uncompressed data.

Returns an empty byte array on failure

public byte[] InflateBytesENC(string str);

The opposite of CompressBytesENC. The EncodingMode and CompressionAlgorithm properties should match what was used when compressing.

Returns an empty byte array on failure

Supported Binary Encodings

public string InflateString(byte[] data);

The opposite of CompressString. The Charset and CompressionAlgorithm properties should match what was used when compressing.

Returns null on failure

public string InflateStringENC(string str);

The opposite of CompressStringENC. The Charset, EncodingMode, and CompressionAlgorithm properties should match what was used when compressing.

Returns null on failure

Crypt2 Compression Example

public bool IsUnlocked();

Returns true if the component is unlocked.

public JsonObject LastJsonData();

Introduced in version 9.5.0.70

Provides information about what transpired in the last method called. For many methods, there is no information. For some methods, details about what transpired can be obtained via LastJsonData. For example, after calling a method to verify a signature, the LastJsonData will return JSON with details about the algorithms used for signature verification.

Returns null on failure

public string MacBdENC(BinData bd);

Introduced in version 9.5.0.66

Computes a Message Authentication Code on the bytes contained in bd, using the MAC algorithm specified in the MacAlgorithm property. The result is encoded to a string using the encoding (base64, hex, etc.) specified by the EncodingMode property.

Returns null on failure

public byte[] MacBytes(byte[] inBytes);

Introduced in version 9.5.0.55

Computes a Message Authentication Code using the MAC algorithm specified in the MacAlgorithm property.

Returns an empty byte array on failure

Demonstrates the MacBytes Method

public string MacBytesENC(byte[] inBytes);

Computes a Message Authentication Code using the MAC algorithm specified in the MacAlgorithm property. The result is encoded to a string using the encoding (base64, hex, etc.) specified by the EncodingMode property.

Returns null on failure

Demonstrates the MacBytesENC Method

public byte[] MacString(string inText);

Introduced in version 9.5.0.55

Computes a Message Authentication Code using the MAC algorithm specified in the MacAlgorithm property.

Returns an empty byte array on failure

Demonstrates the MacString Method

public string MacStringENC(string inText);

Introduced in version 9.5.0.55

Computes a Message Authentication Code using the MAC algorithm specified in the MacAlgorithm property. The result is encoded to a string using the encoding (base64, hex, etc.) specified by the EncodingMode property.

Returns null on failure

Demonstrates HMAC SHA256

public string MySqlAesDecrypt(string strEncryptedHex, string strPassword);

Matches MySQL's AES_DECRYPT function. strEncryptedHex is a hex-encoded string of the AES encrypted data. The return value is the original unencrypted string.

Returns null on failure

public string MySqlAesEncrypt(string strData, string strPassword);

Matches MySQL's AES_ENCRYPT function. The return value is a hex-encoded string of the encrypted data. The equivalent call in MySQL would look like this: HEX(AES_ENCRYPT('The quick brown fox jumps over the lazy dog','password'))

Returns null on failure

Match MySQL AES_ENCRYPT Function

public bool OpaqueSignBd(BinData bd);

Introduced in version 9.5.0.67

In-place signs the contents of bd. The contents of bd is replaced with the PKCS7/CMS format signature that embeds the data that was signed.

Returns true for success, false for failure.

RSASSA-PSS Sign Binary Data

public byte[] OpaqueSignBytes(byte[] data);

Digitally signs a byte array and returns a PKCS7/CMS format signature. This is a signature that contains both the original data as well as the signature. A certificate must be set by calling SetSigningCert prior to calling this method.

Returns an empty byte array on failure

public string OpaqueSignBytesENC(byte[] data);

Digitally signs a byte array and returns a PKCS7/CMS format signature in encoded string format (such as Base64 or hex). This is a signature that contains both the original data as well as the signature. A certificate must be set by calling SetSigningCert prior to calling this method. The EncodingMode property controls the output encoding, which can be "Base64", "QP","Hex", etc. (See the EncodingMode property.)

Returns null on failure

Supported Binary Encodings

public byte[] OpaqueSignString(string str);

Digitally signs a string and returns a PKCS7/CMS format signature. This is a signature that contains both the original data as well as the signature. A certificate must be set by calling SetSigningCert prior to calling this method. The Charset property controls the character encoding of the string that is signed. (Languages such as VB.NET, C#, and Visual Basic work with Unicode strings.) To sign Unicode data (2 bytes per char), set the Charset property to "Unicode". To implicitly convert the string to a mutlibyte charset such as "iso-8859-1", "Shift_JIS", "utf-8", or something else, then set the Charset property to the name of the charset before signing. The complete list of charsets is listed in the EncryptString method description.

Returns an empty byte array on failure

public string OpaqueSignStringENC(string str);

Digitally signs a string and returns a PKCS7/CMS format signature in encoded string format (such as base64 or hex). This is a signature that contains both the original data as well as the signature. A certificate must be set by calling SetSigningCert prior to calling this method. The Charset property controls the character encoding of the string that is signed. (Languages such as VB.NET, C#, and Visual Basic work with Unicode strings.) To sign Unicode data (2 bytes per char), set the Charset property to "Unicode". To implicitly convert the string to a mutlibyte charset such as "iso-8859-1", "Shift_JIS", "utf-8", or something else, then set the Charset property to the name of the charset before signing. The complete list of charsets is listed in the EncryptString method description.

The EncodingMode property controls the output encoding, which can be "Base64", "QP","Hex", etc. (See the EncodingMode property.)

Returns null on failure

Supported Binary Encodings

Create and Verify an Opaque PKCS7/CMS Signature

public bool OpaqueVerifyBd(BinData bd);

Introduced in version 9.5.0.67

In-place verifies and unwraps the PKCS7/CMS contents of bd. If the signature is verified, the contents of bd will be replaced with the original data, and the method returns true. If the signature is not verified, then the contents of bd remain unchanged and the method returns false.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Returns true for success, false for failure.

RSASSA-PSS Sign Binary Data

public byte[] OpaqueVerifyBytes(byte[] p7s);

Verifies an opaque signature and returns the original data. If the signature verification fails, the returned data will be 0 bytes in length.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Returns an empty byte array on failure

public byte[] OpaqueVerifyBytesENC(string p7s);

Verifies an opaque signature (encoded in string form) and returns the original data. If the signature verification fails, the returned data will be 0 bytes in length.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Returns an empty byte array on failure

Supported Binary Encodings

public string OpaqueVerifyString(byte[] p7s);

Verifies an opaque signature and returns the original string. If the signature verification fails, the returned string will be 0 characters in length.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Returns null on failure

public string OpaqueVerifyStringENC(string p7s);

Verifies an opaque signature (encoded in string form) and returns the original data string. If the signature verification fails, the returned string will be 0 characters in length.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Returns null on failure

Supported Binary Encodings

Create and Verify an Opaque PKCS7/CMS Signature

public string Pbkdf1(string password, string charset, string hashAlg, string salt, int iterationCount, int outputKeyBitLen, string encoding);

Implements the PBKDF1 algorithm (Password Based Key Derivation Function #1). The password is converted to the character encoding represented by charset before being passed (internally) to the key derivation function. The hashAlg may be "md5", "sha1", "md2", etc. The salt should be random data at least 8 bytes (64 bits) in length. (The GenRandomBytesENC method is good for generating a random salt value.) The iterationCount should be no less than 1000. The length (in bits) of the derived key output by this method is controlled by outputKeyBitLen. The encoding argument may be "base64", "hex", etc. It controls the encoding of the output, and the expected encoding of the salt. The derived key is returned.

Note: Starting in version 9.5.0.47, if the charset is set to one of the keywords "hex" or "base64", then the password will be considered binary data that is hex or base64 encoded. The bytes will be decoded and used directly as a binary password.

Returns null on failure

PBKDF1 - Derive Key from Password

public string Pbkdf2(string password, string charset, string hashAlg, string salt, int iterationCount, int outputKeyBitLen, string encoding);

Implements the PBKDF2 algorithm (Password Based Key Derivation Function #2). The password is converted to the character encoding represented by charset before being passed (internally) to the key derivation function. The hashAlg may be "sha256", "sha384", "sha512", "md5", "sha1", "md2", or any hash algorithm listed in the HashAlgorithm property. The salt should be random data at least 8 bytes (64 bits) in length. (The GenRandomBytesENC method is good for generating a random salt value.) The iterationCount should be no less than 1000. The length (in bits) of the derived key output by this method is controlled by outputKeyBitLen. The encoding argument may be "base64", "hex", etc. It controls the encoding of the output, and the expected encoding of the salt. The derived key is returned.

Note: The PBKDF2 function (internally) utilizes a PRF that is a pseudorandom function that is a keyed HMAC. The hash algorithm specified by hashAlg determines this PRF. If hashAlg is "SHA256", then HMAC-SHA256 is used for the PRF. Likewise, if the hash function is "SHA1", then HMAC-SHA1 is used. HMAC can be used with any hash algorithm.

Note: Starting in version 9.5.0.47, if the charset is set to one of the keywords "hex" or "base64", then the password will be considered binary data that is hex or base64 encoded. The bytes will be decoded and used directly as a binary password.

Returns null on failure

PBKDF2 - Derive Key from Password

WPA Key Calculation from PassPhrase to Hex

Duplicate .NET's Rfc2898DeriveBytes Functionality

public string Pkcs7ExtractDigest(int signerIndex, string pkcs7);

Introduced in version 9.5.0.48

Extracts the signature digest contained within a PKCS7 signature. The PKCS7 is passed in the encoding determined by the EncodingMode property (such as base64, hex, etc.) an the signature digest is returned in the same encoding.

Returns null on failure

Extract PKCS7 Signature Digest

public void RandomizeIV();

Sets the initialization vector to a random value.

public void RandomizeKey();

Sets the secret key to a random value.

public byte[] ReadFile(string filename);

Convenience method to read an entire file and return as a byte array.

Returns an empty byte array on failure

public string ReEncode(string encodedData, string fromEncoding, string toEncoding);

Provides a means for converting from one encoding to another (such as base64 to hex). This is helpful for programming environments where byte arrays are a real pain-in-the-***. The fromEncoding and toEncoding may be (case-insensitive) "Base64", "modBase64", "Base32", "Base58", "UU", "QP" (for quoted-printable), "URL" (for url-encoding), "Hex", "Q", "B", "url_oauth", "url_rfc1738", "url_rfc2396", and "url_rfc3986".

Returns null on failure

public bool SetDecryptCert(Cert cert);

Sets the digital certificate to be used for decryption when the CryptAlgorithm property is set to "PKI". A private key is required for decryption. Because this method only specifies the certificate, a prerequisite is that the certificate w/ private key must have been pre-installed on the computer. Private keys are stored in the Windows Protected Store (either a user account specific store, or the system-wide store). The Chilkat component will automatically locate and find the certificate's corresponding private key from the protected store when decrypting.

Returns true for success, false for failure.

public bool SetDecryptCert2(Cert cert, PrivateKey key);

Sets the digital certificate to be used for decryption when the CryptAlgorithm property is set to "PKI". The private key is supplied in the 2nd argument to this method, so there is no requirement that the certificate be pre-installed on a computer before decrypting (if this method is called).

Returns true for success, false for failure.

public bool SetEncodedAad(string aadStr, string encoding);

Introduced in version 9.5.0.55

Sets the authenticated additional data from an encoded string. The authenticated additional data (AAD), if any, is used in authenticated encryption modes such as GCM. The aadStr argument can be set to any of the following strings: "base64", "hex", "quoted-printable", "ascii", or "url".

The Aad is used when the CipherMode is "gcm" (Galois/Counter Mode), which is a mode valid for symmetric ciphers that have a block size of 16 bytes, such as AES or Twofish.

Returns true for success, false for failure.

AEAD AES 128-bit GCM

public bool SetEncodedAuthTag(string authTagStr, string encoding);

Introduced in version 9.5.0.55

Sets the expected authenticated tag from an encoded string. The authenticated tag is used in authenticated encryption modes such as GCM. An application would set the expected authenticated tag prior to decrypting. The authTagStr argument can be set to any of the following strings: "base64", "hex", "quoted-printable", "ascii", or "url".

The authenticated tag plays a role when the CipherMode is "gcm" (Galois/Counter Mode), which is a mode valid for symmetric block ciphers that have a block size of 16 bytes, such as AES or Twofish.

Returns true for success, false for failure.

AEAD AES 128-bit GCM

public void SetEncodedIV(string ivStr, string encoding);

Sets the initialization vector from an encoded string. The encoding argument can be set to any of the following strings: "base64", "hex", "quoted-printable", "ascii", or "url".

public void SetEncodedKey(string keyStr, string encoding);

Sets the secret key from an encoded string. The encoding argument can be set to any of the following strings: "base64", "hex", "quoted-printable", "ascii", or "url".

Generate Encryption Key

public void SetEncodedSalt(string saltStr, string encoding);

Sets the password-based encryption (PBE) salt bytes from an encoded string. The encoding argument can be set to any of the following strings: "base64", "hex", "quoted-printable", "ascii", or "url".

public bool SetEncryptCert(Cert cert);

Tells the encryption library to use a specific digital certificate for public-key encryption. To encrypt with multiple certificates, call AddEncryptCert once for each certificate. (Calling this method is the equivalent of calling ClearEncryptCerts followed by AddEncryptCert.)

Returns true for success, false for failure.

RSAES-OAEP Encrypt String with AES-128 Content Encryption and SHA256

public void SetHmacKeyBytes(byte[] keyBytes);

This method is deprecated. It will be removed in a future version.

Sets the HMAC key to be used for one of the HMAC methods.

Note: If using Chilkat v9.5.0.55 or later, update your programs to use SetMacKeyBytes instead.

public void SetHmacKeyEncoded(string key, string encoding);

This method is deprecated. It will be removed in a future version.

Sets the secret key to be used for one of the HMAC methods. The encoding can be set to any of the following strings: "base64", "hex", "quoted-printable", or "url".

Note: If using Chilkat v9.5.0.55 or later, update your programs to use SetMacKeyEncoded instead.

public void SetHmacKeyString(string key);

This method is deprecated. It will be removed in a future version.

Sets the MAC key to be used for one of the HMAC methods.

Note: If using Chilkat v9.5.0.55 or later, update your programs to use SetMacKeyString instead.

Demonstrates HMAC SHA256

public bool SetMacKeyBytes(byte[] keyBytes);

Introduced in version 9.5.0.55

Sets the MAC key to be used for one of the Mac methods.

Returns true for success, false for failure.

public bool SetMacKeyEncoded(string key, string encoding);

Introduced in version 9.5.0.55

Sets the MAC key to be used for one of the Mac methods. The encoding can be set to any of the following strings: "base64", "hex", "quoted-printable", or "url".

Returns true for success, false for failure.

Poly1305 MAC

public bool SetMacKeyString(string key);

Introduced in version 9.5.0.55

Sets the MAC key to be used for one of the Mac methods.

Returns true for success, false for failure.

public void SetSecretKeyViaPassword(string password);

Accepts a password string and (internally) generates a binary secret key of the appropriate bit length and sets the SecretKey property. This method should only be used if you are using Chilkat for both encryption and decryption because the password-to-secret-key algorithm would need to be identical for the decryption to match the encryption.

There is no minimum or maximum password length. The password string is transformed to a binary secret key by computing the MD5 digest (of the utf-8 password) to obtain 16 bytes. If the KeyLength is greater than 16 bytes, then the MD5 digest of the Base64 encoding of the utf-8 password is added. A max of 32 bytes of key material is generated, and this is truncated to the actual KeyLength required. The example below shows how to manually duplicate the computation.

Manually Duplicate SetSecretKeyViaPassword

openssl enc decrypt

public bool SetSigningCert(Cert cert);

Specifies a certificate to be used when creating PKCS7 digital signatures. Signing requires both a certificate and private key. In this case, the private key is implicitly specified if the certificate originated from a PFX that contains the corresponding private key, or if on a Windows-based computer where the certificate and corresponding private key are pre-installed. (If a PFX file is used, it is provided via the AddPfxSourceFile or AddPfxSourceData methods.)

Returns true for success, false for failure.

public bool SetSigningCert2(Cert cert, PrivateKey privateKey);

Specifies a digital certificate and private key to be used for creating PKCS7 digital signatures.

Returns true for success, false for failure.

Create and Verify an Opaque PKCS7/CMS Signature

public bool SetVerifyCert(Cert cert);

Sets the digital certificate to be used in verifying a signature.

Returns true for success, false for failure.

Create and Verify an Opaque PKCS7/CMS Signature

public string SignBdENC(BinData dataToSign);

Introduced in version 9.5.0.67

Digitally signs the contents of dataToSign and returns the detached digital signature in an encoded string (according to the EncodingMode property setting).

Returns null on failure

RSASSA-PSS Sign Binary Data

public byte[] SignBytes(byte[] data);

Digitally signs a byte array and returns the detached digital signature. A certificate must be set by calling SetSigningCert prior to calling this method.

Returns an empty byte array on failure

public string SignBytesENC(byte[] data);

Digitally signs a byte array and returns the detached digital signature encoded as a printable string. A certificate must be set by calling SetSigningCert prior to calling this method. The EncodingMode property controls the output encoding, which can be "Base64", "QP", or "Hex".

Returns null on failure

Supported Binary Encodings

public string SignSbENC(StringBuilder sb);

Introduced in version 9.5.0.67

Digitally signs a the contents of sb and returns the PKCS7 detached digital signature as an encoded string according to the EncodingMode property setting.

Returns null on failure

RSASSA-PSS Sign Text

public byte[] SignString(string str);

Digitally signs a string and returns the detached digital signature. A certificate must be set by calling SetSigningCert prior to calling this method. The Charset property controls the character encoding of the string that is signed. (Languages such as VB.NET, C#, and Visual Basic work with Unicode strings.) To sign Unicode data (2 bytes per char), set the Charset property to "Unicode". To implicitly convert the string to a mutlibyte charset such as "iso-8859-1", "Shift_JIS", "utf-8", or something else, then set the Charset property to the name of the charset before signing. The complete list of charsets is listed in the EncryptString method description.

Returns an empty byte array on failure

public string SignStringENC(string str);

Digitally signs a string and returns the PKCS7 detached digital signature as an encoded string. A certificate must be set by calling SetSigningCert prior to calling this method. The Charset property controls the character encoding of the string that is signed. (Languages such as VB.NET, C#, and Visual Basic work with Unicode strings.) To sign Unicode data (2 bytes per char), set the Charset property to "Unicode". To implicitly convert the string to a mutlibyte charset such as "iso-8859-1", "Shift_JIS", "utf-8", or something else, then set the Charset property to the name of the charset before signing. The complete list of charsets is listed in the EncryptString method description.

The encoding of the output string is controlled by the EncodingMode property, which can be set to "Base64", "QP", or "Hex".

Returns null on failure

Supported Binary Encodings

RSASSA-PSS Sign String to Create Base64 PCKS7 Signature

public byte[] StringToBytes(string inStr, string charset);

Convert a string to a byte array where the characters are encoded according to the charset specified.

Returns an empty byte array on failure

public string TrimEndingWith(string inStr, string ending);

Trim a string ending with a specific substring until the string no longer ends with that substring.

Returns null on failure

public bool UnlockComponent(string unlockCode);

Unlocks the component. This must be called once prior to calling any other method.

Returns true for success, false for failure.

Diagnosing UnlockComponent Problems

UnlockComponent LastErrorText shows exact string passed to it.

Verify UnlockComponent Success w/ Purchased Unlock Code

LastErrorText Standard Information

public bool UseCertVault(XmlCertVault vault);

Introduced in version 9.5.0.40

Adds an XML certificate vault to the object's internal list of sources to be searched for certificates and private keys when encrypting/decrypting or signing/verifying. Unlike the AddPfxSourceData and AddPfxSourceFile methods, only a single XML certificate vault can be used. If UseCertVault is called multiple times, only the last certificate vault will be used, as each call to UseCertVault will replace the certificate vault provided in previous calls.

Returns true for success, false for failure.

public bool VerifyBdENC(BinData data, string encodedSig);

Introduced in version 9.5.0.67

Verifies a digital signature against the original data contained in data. Returns true if the signature is verified.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Returns true for success, false for failure.

RSASSA-PSS Sign Binary Data

public bool VerifyBytes(byte[] data, byte[] sig);

Verifies a byte array against a digital signature and returns true if the byte array is unaltered.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

public bool VerifyBytesENC(byte[] data, string encodedSig);

Verifies a byte array against a string-encoded digital signature and returns true if the byte array is unaltered. This method can be used to verify a signature produced by SignBytesENC. The EncodingMode property must be set prior to calling to match the encoding of the digital signature string ("Base64", "QP", or "Hex").

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Supported Binary Encodings

public bool VerifyDetachedSignature(string inFilename, string p7sFilename);

Verifies a .p7s (PKCS #7 Signature) against the original file (or exact copy of it). If the inFilename has not been modified, the return value is true, otherwise it is false. This method is equivalent to VerifyP7S.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

public bool VerifyP7M(string p7mPath, string destPath);

Verifies a .p7m file and extracts the original file from the .p7m. Returns true if the signature is valid and the contents are unchanged. Otherwise returns false.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Extract a File from a .p7m (PKCS7 Signed-Data)

CAdES BES Attached (Opaque) Signature

Create P7M Using Pre-Installed Windows Certificate

public bool VerifyP7S(string inFilename, string p7sFilename);

Verifies a .p7s (PKCS #7 Signature) against the original file (or exact copy of it). If the inFilename has not been modified, the return value is true, otherwise it is false.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

CAdES BES Detached Signature

public bool VerifySbENC(StringBuilder sb, string encodedSig);

Introduced in version 9.5.0.67

Verifies a digital signature against the original data contained in sb. Returns true if the signature is verified.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Returns true for success, false for failure.

RSASSA-PSS Sign Text

public bool VerifyString(string str, byte[] sig);

Verifies a string against a binary digital signature and returns true if the string is unaltered. This method can be used to verify a signature produced by SignString. The Charset property must be set to the charset that was used when creating the signature.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

public bool VerifyStringENC(string str, string encodedSig);

Verifies a string against a string-encoded digital signature and returns true if the string is unaltered. This method can be used to verify a signature produced by SignStringENC. The Charset and EncodingMode properties must be set to the same values that were used when creating the signature.

Note: The signer certificates can be retrieved after any Verify* method call by using the NumSignerCerts property and the GetSignerCert method.

Supported Binary Encodings

RSASSA-PSS Sign String to Create Base64 PCKS7 Signature

public bool WriteFile(string filename, byte[] fileData);

Convenience method to write an entire byte array to a file.

Returns true for success, false for failure.

Events

Callbacks from asynchronous methods occur in a background thread. However, controls on the UI thread may only be accessed from the UI thread.Therefore, UI updates must be dispatched to the UI thread. One way to do this is as follows:

    public sealed partial class MainPage : Page
    {
        private Windows.UI.Core.CoreDispatcher m_dispatcher = null;

        public MainPage()
        {
            this.InitializeComponent();
            m_dispatcher = Windows.UI.Core.CoreWindow.GetForCurrentThread().Dispatcher;
        }


        async private void Http_ProgressInfo(object sender, Chilkat.ProgressInfoEventArgs eventArgs)
        {
            await m_dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, () =>
            {
                // Application code to update the UI goes here...
            });
        }

    }